Machine Learning for Social Multiparty Human--Robot Interaction
نویسندگان
چکیده
منابع مشابه
Learning Social Affordance for Human-Robot Interaction
In this paper, we present an approach for robot learning of social affordance from human activity videos. We consider the problem in the context of human-robot interaction: Our approach learns structural representations of human-human (and human-object-human) interactions, describing how body-parts of each agent move with respect to each other and what spatial relations they should maintain to ...
متن کاملWhy Robots Should Be Social: Enhancing Machine Learning through Social Human-Robot Interaction
Social learning is a powerful method for cultural propagation of knowledge and skills relying on a complex interplay of learning strategies, social ecology and the human propensity for both learning and tutoring. Social learning has the potential to be an equally potent learning strategy for artificial systems and robots in specific. However, given the complexity and unstructured nature of soci...
متن کاملMachine Learning of Social States and Skills for Multi-Party Human-Robot Interaction
We describe several forms of machine learning that are being applied to social interaction in Human-Robot Interaction (HRI), using a robot bartender as our scenario. We first present a data-driven approach to social state recognition based on supervised learning. We then describe an approach to social interaction management based on reinforcement learning, using a data-driven simulation of mult...
متن کاملAnalyzing social situations for human–robot interaction
This paper presents an algorithm for analyzing social situations within a robot. We contribute a method that allows the robot to use information about the situation to select interactive behaviors. This work is based on interdependence theory, a social psychological theory of interaction and interpersonal situation analysis. Experiments demonstrate the utility of the information provided by the...
متن کاملGhost-in-the-Machine reveals human social signals for human–robot interaction
We used a new method called "Ghost-in-the-Machine" (GiM) to investigate social interactions with a robotic bartender taking orders for drinks and serving them. Using the GiM paradigm allowed us to identify how human participants recognize the intentions of customers on the basis of the output of the robotic recognizers. Specifically, we measured which recognizer modalities (e.g., speech, the di...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: ACM Transactions on Interactive Intelligent Systems
سال: 2014
ISSN: 2160-6455,2160-6463
DOI: 10.1145/2600021